Please check that this question paper contains 09 questions and 02 printed pages within first ten minutes.

[Total Mean Questions: 09]

[Total No. of Pages: 02]

Uni. Rolledo.

EVENING

Program: B.Tech. (Scheme 2018)

Semester: 4th

11 JAN 2023

Name of Subject: Electromagnetic field theory

Subject Code: PCEC-108

Paper ID: 16224

Scientific calculator is allowed

Time Allowed: 03 Hours

Max. Marks: 60

NOTE

1) First A and B are compulsory

2) Part-C has Two Questions Q8 and Q9. Both are compulsory, but with internal choice.

3) an inissing data may be assumed appropriately.

Part - A

[Marks: 02 each]

Q:

- (a) Explain briefly "Degenerate modes" and "Evanescent modes".
- b) Waveguides act a high pass filter'. Justify the statement.
- Summarise Maxwell's equation in differential form and hence deduce them for static fields.
- d) In free space H=100 cos (wt-10x) a_z A/m. Compute displacement current density J_d .
- (e) Cite four major differences between Transverse Electric and Transverse Magnetic waves.
- (*) State Poynting theorem. Write the units of poynting vector.

Part – B

[Marks: 04 each]

- Q2. The magnetic field H of a plane wave has a magnitude of 5 m A/m in a medium defined by ε_r =4, μ_r =1. Determine the maximum energy density in the plane wave.
- Q3. If E (z,t)= 40 $\cos(10^8 t+40z)a_y$ A/m. Identify the amplitude, frequency, phase constant and the wavelength.
- Qualification Derive expression for wave impedance for TM waves in parallel planes.

Page 1 of 2

P.T.O.

11 JAN 2023

- Q5. A low loss transmission line of 100Ω characteristic impedance is connected to a load of $400~\Omega$. Determine the reflection coefficient & VSWR.
- Q6. Compare the types of polarisations: Linear, circular and elliptical.
- Q7. Evaluate the wave equations for EM wave travelling in a waveguide.

Part - C

[Marks: 12 each]

Q8. Derive the condition for a transmission line to be distortionless. Using the derived condition, compute the values for propagation constant, characteristic impedance and phase velocity of a distortionless line.

OR

Derive the attenuation factor for TE waves travelling in parallel planes.

Q9. A parallel plate guide has plate separation of 4cm. The frequency of impresses signal is 7GHz. Check whether TE₁ or TM₁ mode propagates or not. Also, compute $(Z_g)_{TE1}$ and $(Z_g)_{TM1}$.

OR

 $x \le 0$ defines region 1 and $x \ge 0$ defines region 2. Region 1 is characterized by μ_{r1} =3.0 and region 2 is characterized by μ_{r2} =5.0. If the magnetic field in region 1 is given by H_1 =8.0 a_x + 1.5 a_y - 3.0 a_z , A/m. Compute H_2 and its magnitude.
